Ремонт автолампочек, выполненный своими силами

LED-лампы в автопромышленности имеет большой спрос. Они вытеснили обычные источники освещения, однако ничто не вечно в этом мире. Хотя изготовители пропагандируют долголетие таких ламп, тем не менее и они выходят из строя. Покупать новые – удовольствие не из дешевых, поэтому многие владельцы автомобилей научились решать эту проблему самостоятельно. Главное, разобраться и понять, что же вышло из строя, и приступать к починке. Что такое светодиоды

Ремонт автолампочек, выполненный своими силами

От того насколько будет освещена дорога в ночное время, зависит безопасность водителя транспортного средства, поэтому на рынках имеется большое разнообразие световых источников. Большую популярность набирают светодиодные фары ближнего и дальнего света, и такое новшество обладает рядом преимуществ:

  • продолжительный срок эксплуатации;
  • минимальная потребляемая мощность;
  • равномерный светопоток;
  • яркость освещения.

Многие светодиодные лампы имеют лучшие характеристики, поэтому имеют большой спрос в автомире. Выход из строя

Ремонт автолампочек, выполненный своими силами

По всем техническим характеристикам диоды более долговечны, чем традиционные лампы, но это только в идеальных для них условиях. По сравнению с галогенными и ксеноновыми источниками света, светодиоды очень хрупкие и неустойчивы к ударам и влаге. Поэтому они ломаются, и так как конструкция не дает возможности их разобрать и заменить перегоревший диод, приходится покупать новый. В современном мире ничто не стоит на месте, и появились мастерские, которые предлагают услуги по ремонту. Цены в них кусаются, однако это намного дешевле, нежели приобрести новую лампу на фару. При этом стоимость деталей выйдет небольшой, но из-за сложностей демонтажа цена возрастает. Ремонт

Ремонт автолампочек, выполненный своими силами

Совет: тем, кто не разбираяется в электронике, лучше отнести ее в ремонт квалифицированному специалисту, который сделает диагностику и возьмется за работу.

Ремонт автолампочек, выполненный своими силами

На замену светодиодных фар ремонтники могут предложить как оригинальные, так и неоригинальные изделия. Стоит учитывать то, что чтобы качественно была освещена дорога, надо приобретать либо дорогие и хорошие серии светодиодных ламп, либо же применять более дешевые для дополнительной яркости. Но есть опасность, что бюджетные лампы будут слепить встречные машины, а в некоторых случаях световой поток становится размытым, что ухудшает видимость. Естественно, выгоднее обратиться к мастеру и отремонтировать неисправность, чем приобрести новое изделие. Однако какой бы профессионал ни взялся за столь кропотливую и сложную техническую работу, следует понимать, что по рекомендациям автопроизводителей, качественно провести подобный ремонт невозможно из-за сложной технологии.

В статье описан внешний драйвер для двух светодиодных автомобильных ламп, у которых вышли из строя внутренние драйверы.

Имеющиеся в продаже автомобильные светодиодные лампы (рис. 1) обладают существенным недостатком — ими нельзя пользоваться во время запуска двигателя. Это объясняется отсутствием внутри лампы фильтров помех по питанию, которые рекомендует устанавливать производитель находящейся в лампе микросхемы РТ4115. Возникающие во время пуска двигателя броски напряжения амплитудой до 30 В и выводят такие микросхемы из строя.

Ремонт автолампочек, выполненный своими силами

Рис. Автомобильные светодиодные лампы

Чтобы восстановить работоспособность отказавших ламп, пришлось удалить из них платы неисправных драйверов и заменить их платами-«пустышками». Для этого лампы были разобраны со стороны цоколя и из них удалён герметик. После этого лампы были собраны и загерметизированы клеем «Момент». Конечно, такие лампы уже нельзя подключать к бортсети автомобиля непосредственно. Поэтому для них был изготовлен по схеме, изображённой на рис. 2, внешний драйвер. Благодаря входному фильтру из дросселей L1 и L2 и конденсаторов C1-C10 он устойчив к возникающим при запуске и работе двигателя помехам. Сдвоенный диод Шотки VD1 защищает драйвер от подачи на него напряжения неправильной полярности.

Ремонт автолампочек, выполненный своими силами

Рис. Схема внешнего драйвера

Драйвер предназначен для питания двух не содержащих собственных драйверов светодиодных ламп. В нём имеются два одинаковых импульсных понижающих преобразователя напряжения в стабилизированный выходной ток. В преобразователях нет микроконтроллеров и специализированных микросхем.

На интегральном параллельном стабилизаторе DA3 собран источник образцового напряжения 0,22 В для обоих преобразователей. Именно с этим напряжением преобразователи сравнивают падение напряжения, вызванное током светодиодов, протекающим через резисторы обратной связи R19, R21 и R20, r22. Указанные на схеме номиналы этих резисторов соответствуют выходному току каждого преобразователя 320 мА.

Чертёж печатной платы драйвера и расположения деталей на ней показаны на рис. Плата изготовлена из фольгированного стеклотекстолита толщиной 1,5. 2 мм. Полевые транзисторы IRFR5505 и диоды Шотки B560C теплоотводов в данном случае не требуют. Двухобмоточный дроссель L1 извлечён из неисправного монитора, но подойдёт и любой аналогичный. Дроссель L2 намотан проводом ПЭВ-2 0,1 наферри-товом гантелевидном магнитопроводе диаметром 5. 6 мм и длиной 10 мм до заполнения. Его индуктивность — около 15 мГн. Дроссели L3 и L4 намотаны на магнитопроводах такой же формы диаметром 9 мм и длиной 12 мм проводом ПЭВ-2 0,5 до заполнения. Индуктивность их может находиться в пределах от 80 до 150 мкГн.

Ремонт автолампочек, выполненный своими силами

Рис. Чертёж печатной платы драйвера и расположения деталей на ней

Плата помещена в готовый корпус G1022BF размерами 156x68x44 мм. На рис. 4 показан внешний вид платы в корпусе с открытой крышкой. Драйвер устанавливают в удобном месте под капотом автомобиля.

Ремонт автолампочек, выполненный своими силами

Рис. Внешний вид платы в корпусе с открытой крышкой

Налаживание устройства заключается только в установке требуемого тока светодиодов подборкой резисторов R19-R22.

Читайте также:  Высота гаража под легковой автомобиль

Ремонт автолампочек, выполненный своими силами

Исторически так сложилось, что в моем загородном доме все освещение сделано с помощью светодиодных ламп мощностью 10-11, а в последнее время и 12-13 вт с цоколем Е27. Лампы накаливания на площадь 200 м2 тратили бы слишком много электроэнергии, что не вписывалось бы в концепцию моего энергоэффективного дома с приличным утеплением, твердотопливным дровяным котлом, бесперебойником на автомобильных аккумуляторах и рекуператором. Люминесцентные «энергосберегайки» я невзлюбил с первого взгляда — они часто перегорают, не имеют той энергоэффективности что светодиодные, хрупкие, токсичные при случайном разбивании, мерцают и имеют неприятный спектр.

Ремонт автолампочек, выполненный своими силами

Лампа действительно яркая, инструментальных замеров я не проводил, но визуально светит ярче чем 11 и 12 ваттки того же и аналогичных производителей.

Ремонт автолампочек, выполненный своими силами

25000 часов работы? Ха-ха. Грубо говоря 3 года непрерывной работы? Ни одна лампа у меня столько не светила, перегорают раньше, как ни крути.

Ремонт автолампочек, выполненный своими силами

3 года гарантии, но 27 лет работы при условии использования 2. 5 часа в сутки? Ха-ха-ха. Больше похоже на 3 года работы при использовании 2. 5 часа в сутки, если усреднить те сроки службы, на которых перегорали мои лампы, купленные до этого.

Итак, мы имеем достаточно большой ассортимент неплохих по соотношению цена-яркость недорогих светодиодных ламп среднего качества, которые, к сожалению, склонны внезапно перегорать задолго до заявленного конца срока службы. Почему бы не попробовать продлить их жизнь несложным ремонтом?

Ремонт автолампочек, выполненный своими силами

Светодиодная лампа устроена довольно просто. Корпус, состоящий из цоколя, теплоотводящего радиатора в средней части и матового рассеивателя, драйвер (плата с микросхемой, диодным мостиком и несколькими конденсаторами) для обеспечения стабильных параметров питания светодиодов и плата со светодиодами.

Чтобы добраться до внутренностей лампы, нам нужно тонким ножом пройтись по щели между плафоном-рассеивателем и средней частью корпуса лампы, они соединены чем-то типа герметика, который легко разрезать и, поддев плафон кончиком ножа, вытащить его из защелок средней части корпуса. Обратная сборка лампы производится простым защелкиванием плафона на свое место, при необходимости промазав место контакта силиконовым герметиком.

Ремонт автолампочек, выполненный своими силами

Если хочется оценить состояние конденсаторов, трансформатора и микросхемы драйвера — аналогичным способом подрезаем и поддеваем плату со светодиодами и отделяем ее от средней части корпуса

Ремонт автолампочек, выполненный своими силами

Причин, по которым светодиодная лампа может перестать гореть, может быть несколько. Это может быть вспухание или короткое замыкание в одном из конденсаторов, перегорание микросхемы на драйвере, потеря контакта драйвера с цоколем (с удивлением обнаружил в лампочке Wolta драйвер не припаянный к цоколю, а опирающийся на него ножками-контактами). Наиболее частой причиной выхода лампочки из строя является перегорание одного из светодиодов на плате.

Ремонт в случае вспухания и выхода из строя конденсаторов, микросхемы, диодного мостика и т. я рассматривать не буду, т. данная статья посвящена простому двухминутному ремонту лампочки, доступному каждому, кто умеет держать в руках паяльник.

Ремонт, связанный с большими трудозатратами по выпаиванию, тестированию, покупке и замене радиодеталей, представляется мне нецелесообразным по соотношению потраченное время/сэкономленные деньги.

Светодиоды на плате соединены последовательно — по одному или блоками из 2-4 штук. В случае если в блоке один светодиод, как в лампочках стандартного типоразмера, при его перегорании размыкается вся цепь и остальные светодиоды перестают гореть т. через них перестает проходить электрический ток.

Ремонт автолампочек, выполненный своими силами

Перегоревший светодиод чаще всего можно определить визуально — он раскрошился или имеет черную точку или потемнение.

Итак, чтобы заставить светодиоды гореть, нам нужно восстановить цепь. Можно пойти по сложному пути — заказать светодиоды такого же номинала по напряжению и силе тока, или использовать как донор одну из лампочек такого же типа — отпаять от нее светодиоды, припаять к ремонтируемой лампе взамен испорченного, но мы уже решили, что наш способ ремонта — для тех, кто не имеет особых навыков работы с мелкими радиодеталями и не сможет воспользоваться столом для нагрева или феном для выпаивания светодиодов с лампы-донора и тем более не сможет припаять микродеталь миллиметрового размера аккуратно на плату при том, что контакты находятся в труднодоступном месте.

Значит нам остается восстановить цепь закорачиванием испорченного светодиода. Выкрашиваем его отверткой, шилом или ножом, оголяем контакты, капаем на них флюсом — паяльной кислотой, канифолью и т. и наносим сверху капельку припоя, который соединит эти контакты и восстановит целостность цепи.

Выполнение этой процедуры займет не больше времени, чем прочитать ее описание.

Есть ли недостатки у данного метода? Очевидно, есть. Например, если у нас в цепи было 18 светодиодов напряжением 9 вольт (суммарное напряжение 162 вольта), то теперь в цепи у нас 17 светодиодов, и на каждый приходится уже не 9, а 9. 53 вольта, что, конечно, заставит их гореть немного ярче, но и сократит срок их службы.

Тем не менее, если вы не эксперт в пайке и электронике и не сможете легко найти или выпаять из лампы-донора светодиод на замену сгоревшему, то и такой способ ремонта лампочки можно считать целесообразным, ведь альтернативой обычно является выбрасывание этой лампы. Не думаю что имеет большой смысл везти ее менять по гарантии, т. потраченное на это время вряд ли окупит стоимость лампы.

Читайте также:  Автоэлектрики ижевск круглосуточно

Видео с примером ремонта светодиодной лампочки Camelion:

Недавно один знакомый попросил меня помочь с проблемой. Он занимается разработкой LED ламп, попутно ими приторговывая. У него скопилось некоторое количество ламп, работающих неправильно. Внешне это выражается так – при включении лампа вспыхивает на короткое время (менее секунды) на секунду гаснет и так повторяется бесконечно. Он дал мне на исследование три таких лампы, я проблему решил, неисправность оказалась очень интересной (прямо в стиле Эркюля Пуаро) и я хочу рассказать о пути поиска неисправности. LED лампа выглядит вот так:

Рис 1. Внешний вид разобранной LED лампы

Разработчик применил любопытное решение – тепло от работающих светодиодов забирается тепловой трубкой и передается на классический алюминиевый радиатор. По словам автора, такое решение позволяет обеспечить правильный тепловой режим для светодиодов, минимизируя тепловую деградацию и обеспечивая максимально возможный срок службы диодов. Попутно увеличивается срок службы драйвера питания диодов, так как плата драйвера оказывается вынесенной из теплового контура и температура платы не превышает 50 градусов Цельсия.

Такое решение – разделить функциональные зоны излучения света, отвода тепла и генерации питающего тока – позволило получить высокие эксплуатационные характеристики лампы по надежности, долговечности и ремонтопригодности. Минус таких ламп, как ни странно, прямо вытекает из ее плюсов – долговечная лампа не нужна производителям :). Историю о сговоре производителей ламп накаливания о максимальном сроке службы в 1000 часов все помнят?

Ну и не могу не отметить характерный внешний вид изделия. Мой «госконтроль» (жена) не разрешил мне ставить эти лампы в люстру, где они видны.

Вернемся к проблемам драйвера.

Вот так выглядит плата драйвера:

Рис 2. Внешний вид платы LED драйвера со стороны поверхностного монтажа

И с обратной стороны:

Рис 3. Внешний вид платы LED драйвера со стороны силовых деталей

Изучение ее под микроскопом позволило определить тип управляющей микросхемы – это MT7930. Это микросхема контроля обратноходового преобразователя (Fly Back), обвешанная разнообразными защитами, как новогодняя елка – игрушками.

В МТ7930 встроены защиты:

• от превышения тока ключевого элемента
• понижения напряжения питания
• повышения напряжения питания
• короткого замыкания в нагрузке и обрыва нагрузки. • от превышения температуры кристалла

Декларирование защиты от короткого замыкания в нагрузке для источника тока носит скорее маркетинговый характер 🙂

Принципиальной схемы на именно такой драйвер добыть не удалось, однако поиск в сети дал несколько очень похожих схем. Наиболее близкая приведена на рисунке:

Ремонт автолампочек, выполненный своими силами

Рис 4. LED Driver MT7930. Схема электрическая принципиальная

Анализ этой схемы и вдумчивое чтение мануала к микросхеме привело меня к выводу, что источник проблемы мигания – это срабатывание защиты после старта. процедура начального запуска проходит (вспыхивание лампы – это оно и есть), но далее преобразователь выключается по какой-то из защит, конденсаторы питания разряжаются и цикл начинается заново.

Внимание! В схеме присутствуют опасные для жизни напряжения! Не повторять без должного понимания что вы делаете!

Для исследования сигналов осциллографом надо развязать схему от сети, чтобы не было гальванического контакта. Для этого я применил разделительный трансформатор. На балконе в запасах были найдены два трансформатора ТН36 еще советского производства, датированные 1975 годом. Ну, это вечные устройства, массивные, залитые полностью зеленым лаком. Подключил по схеме 220 – 24 – 24 -220. сначала понизил напряжение до 24 вольт (4 вторичных обмотки по 6. 3 вольта), а потом повысил. Наличие нескольких первичных обмоток с отводами дало мне возможность поиграть с разными напряжениями питания – от 110 вольт до 238 вольт. Такое решение конечно несколько избыточно, но вполне пригодно для одноразовых измерений.

Рис 5. Фото разделительного трансформатора

Из описания старта в мануале следует, что при подаче питания начинает заряжаться конденсатор С8 через резисторы R1 и R2 суммарным сопротивлением около 600 ком. Два резистора применены из требований безопасности, чтобы при пробое одного ток через эту цепь не превысил безопасного значения.

Итак, конденсатор по питанию медленно заряжается (это время порядка 300-400 мс) и когда напряжение на нем достигает уровня 18,5 вольт – запускается процедура старта преобразователя. Микросхема начинает генерировать последовательность импульсов на ключевой полевой транзистор, что приводит к возникновению напряжения на обмотке Na. Это напряжение используется двояко – для формирования импульсов обратной связи для контроля выходного тока (цепь R5 R6 C5) и для формирования напряжения рабочего питания микросхемы (цепь D2 R9). Одновременно в выходной цепи возникает ток, который и приводит к зажиганию лампы.

Почему же срабатывает защита и по какому именно параметру?

Срабатывание защиты по превышению выходного напряжения?

Для проверки этого предположения я выпаял и проверил резисторы в цепи делителя (R5 10 ком и R6 39 ком). Не выпаивая их не проверить, поскольку через обмотку трансформатора они запараллелены. Элементы оказались исправны, но в какой-то момент схема заработала!

Дал схеме поработать часок – все ОК.

А если дать ей остыть? После 20 минут в выключенном состоянии не работает.

Читайте также:  Самый удобный пробник-прозвонка автоэлектрика

Очень хорошо, видимо дело в нагреве какого-то элемента?

Но какого? И какие же параметры элемента могут уплывать?

В этой точке я сделал вывод, что на плате преобразователя имеется какой-то элемент, чувствительный к температуре. Нагрев этого элемента полностью нормализует работу схемы. Что же это за элемент?

Подозрение пало на трансформатор. Проблема мыслилась так – трансформатор из-за неточностей изготовления (скажем на пару витков недомотана обмотка) работает в области насыщения и из-за резкого падения индуктивности и резкого нарастания тока срабатывает защита по току полевого ключа. Это резистор R4 R8 R19 в цепи стока, сигнал с которого подается на вывод 8 (CS, видимо Current Sense) микросхемы и используется для цепи ОС по току и при превышении уставки в 2. 4 вольта отключает генерацию для защиты полевого транзистора и трансформатора от повреждений. На исследуемой плате стоит параллельно два резистора R15 R16 с эквивалентным сопротивлением 2,3 ома.

Но насколько я знаю, параметры трансформатора при нагреве ухудшаются, т. поведение системы должно быть другим – включение, работа минут 5-10 и выключение. Трансформатор на плате весьма массивный и тепловая постоянная у него ну никак не менее единиц минут. Может, конечно в нем есть короткозамкнутый виток, который исчезает при нагреве?

Перепайка трансформатора на гарантированно исправный была в тот момент невозможна (не привезли еще гарантированно рабочую плату), поэтому оставил этот вариант на потом, когда совсем версий не останется :). Плюс интуитивное ощущение – не оно. Я доверяю своей инженерной интуиции.

К этому моменту я проверил гипотезу о срабатывании защиты по току, уменьшив резистор ОС по току вдвое припайкой параллельно ему такого же – это никак не повлияло на моргание лампы.

Значит, с током полевого транзистора все нормально и превышения по току нет. Это было хорошо видно и по форме сигнала на экране осциллографа. Пик пилообразного сигнала составлял 1,8 вольта и явно не достигал значения в 2,4 вольта, при котором микросхема выключает генерацию.

К изменению нагрузки схема также оказалась нечувствительна – ни подсоединение второй головки параллельно, ни переключение прогретой головы на холодную и обратно ничего не меняло.

Я исследовал напряжение питания микросхемы. При работе в штатном режиме все напряжения были абсолютно нормальными. В мигающем режиме тоже, насколько можно было судить по формам сигналов на экране осциллографа.

По прежнему, система мигала в холодном состоянии и начинала нормально работать при прогреве ножки трансформатора паяльником. Секунд 15 погреть – и все нормально заводится.

Прогрев микросхемы паяльником ничего не давал.

Что же еще может мешать переходу от режима запуска в рабочий режим?!!!

От полной безнадеги интуитивно припаял параллельно электролитическому конденсатору 10 мкф на 35 вольт по питанию микросхемы такой же.

И тут наступило счастье. Заработало!

Замена конденсатора 10 мкф на 22 мкф полностью решило проблему.

Вот он, виновник проблемы:

Рис 6. Конденсатор с неправильной емкостью

Теперь стал понятен механизм неисправности. Схема имеет две цепи питания микросхемы. Первая, запускающая, медленно заряжает конденсатор С8 при подаче 220 вольт через резистор в 600 ком. После его заряда микросхема начинает генерировать импульсы для полевика, запуская силовую часть схемы. Это приводит к генерации питания для микросхемы в рабочем режиме на отдельной обмотке, которое поступает на конденсатор через диод с резистором. Сигнал с этой обмотки также используется для стабилизации выходного тока.

Пока система не вышла в рабочий режим — микросхема питается запасенной энергией в конденсаторе. И ее не хватало чуть-чуть — буквально пары-тройки процентов. Падения напряжения оказалось достаточно, чтобы система защиты микросхемы срабатывала по пониженному питанию и отключала все. И цикл начинался заново.

Отловить эту просадку напряжения питания осциллографом не получалось — слишком грубая оценка. Мне казалось, что все нормально.

Прогрев же платы увеличивал емкость конденсатора на недостающие проценты — и энергии уже хватало на нормальный запуск.

Понятно, почему только некоторая часть драйверов отказала при полностью исправных элементах. Сыграло роль причудливое сочетание следующих факторов:

• Малая емкость конденсатора по питанию. Положительную роль сыграл допуск на емкость электролитических конденсаторов (-20% +80%), т. емкости номиналом 10 мкф в 80% случаев имеют реальную емкость около 18 мкф. Со временем емкость уменьшается из-за высыхания электролита. • Положительная температурная зависимость емкости электролитических конденсаторов от температуры. Повышенная температура на месте выходного контроля — достаточно буквально пары-тройки градусов и емкости хватает для нормального запуска. Если предположить, что на месте выходного контроля было не 20 градусов, а 25-27, то этого оказалось достаточно для практически 100% прохождения выходного контроля.

Производитель драйверов сэкономил конечно, применив емкости меньшего номинала по сравнению с референс дизайн из мануала (там указано 22 мкф) но свежие емкости при повышенной температуре и с учетом разброса +80% позволили партию драйверов сдать заказчику. Заказчик получил вроде бы работающие драйверы, которые со временем стали отказывать по непонятной причине. Интересно было бы узнать – инженеры производителя учли особенности поведения электролитических конденсаторов при повышении температуры и естественный разброс или это получилось случайно?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *